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INTRODUCTION:   
Blast-related traumatic brain injury (TBI) continues to be a major cause of death and disability in the wars in Iraq and 
Afghanistan(Okie 2005; Warden and French 2005; Armonda et al. 2006; Warden 2006; Martin et al. 2008; Benzinger et 
al. 2009; Cernak and Noble-Haeusslein 2009; Champion et al. 2009; Kochanek et al. 2009; Ling et al. 2009). However, very 
little is known about the pathological features of these injuries, and this has limited the analyses of the underlying 
mechanisms of injury(Mott 1916; Mott 1917; Cohen and Biskind 1946; Cramer et al. 1949; Guy et al. 2000; Taber et al. 
2006; Benzinger et al. 2009; Kocsis and Tessler 2009).  
 In brain injuries caused by non-blast related trauma (e.g. falls, motor vehicle accidents, etc.), post-mortem 
pathological analyses have revealed that traumatic axonal injury in a set of characteristic locations is a consistent 
hallmark(Strich 1956; Strich 1961; Oppenheimer 1968; Clark 1974; Adams et al. 1982; Adams et al. 1989; Abou-Hamden 
et al. 1997; Jones et al. 1998). Of note, even in mild TBI with death due to other causes, axonal injury was prominent(Pilz 
1983; Blumbergs et al. 1994; Blumbergs et al. 1995; Abou-Hamden et al. 1997). In animal models of blast-related TBI, 
axonal injury appears to be present(Stone and Young ; Saljo et al. 2000; Bauman et al. 2009; Long et al. 2009) but the 
extent to which these animal models accurately reproduce the injuries suffered in human blast injury is unknown.  
 Axonal injury goes largely undetected on CT or conventional MRI(Jones et al. 1998), but a newer MRI modality 
called diffusion tensor imaging (DTI) has proven to be very sensitive to traumatic axonal injury in animal models(Kim et 
al. 2007; Loy et al. 2007; Mac Donald et al. 2007a; Mac Donald et al. 2007b; Zakaria et al. 2007). At Washington 
University (WU), recent advances in MRI technology now allow the possibility of performing DTI in human brain tissue at 
very high resolution. These innovative methods have the potential to allow detailed radiological-pathological correlations 
for traumatic axonal injury to be performed for the first time in the human brain. A central part of these advances is the 
use of high resolution imaging of blocks of human brain at 4.7 Tesla. This high resolution imaging has allowed 
visualization of both large and small white matter tracts, plus subcortical white matter regions close to the junctions 
between gray and white matter. In contrast, lower resolution approaches using commercial hardware mainly allow 
analyses of larger white matter tracts. 
 
Specific Aims 
 Aim 1) To optimize the resolution and signal quality of whole human brain ex vivo diffusion tensor imaging. We will 
iteratively refine the design of the specialized MRI coils and MRI pulse sequences using whole normal human brains and 
MRI phantoms. Resolution at or below 0.75 mm will be the goal.  
 
Aim 2) To perform radiological-pathological correlations using whole human brains from US military fatalities caused by 
blast-related injuries and civilian TBI fatalities. This will include a wide range of TBI severities, including mild to moderate 
TBI with death caused by extracranial injuries. A total of 30 brains will be assessed.  
 
Aim 3) To construct detailed atlases of the brain regions most frequently injured by blast-related TBI and non-blast-
related TBI. These atlases will be distributed to scientists and clinicians in both military and civilian sectors focusing on 
TBI. 
 
 BODY:   

To recap, during year 2 of the project, we determined that ex vivo whole brain imaging would not be feasible 
with current technology, and turned our attention to high resolution ex vivo imaging of selected smaller blocks of brain 
tissue.  During year 3 of the project, we performed DTI scans on 59 blocks of brain tissue: 2-3 regions from each of 22 
cases. 

The regions chosen were:   
Middle Cerebellar Peduncle: A region suggested to be especially susceptible to blast-related TBI (Mac 
Donald et al NEJM 2011) 
Orbitofrontal White Matter: A region suggested to be vulnerable in both blast-related and non-blast 
related severe TBI.  
Parietal Subcortical White Matter: A region with similar anatomical structure to the orbitofrontal white 
matter but not expected to be especially vulnerable to TBI.   
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The cases are summarized in the following Table:  

Group  Age Range  Mean Age  # of PSCs  # of OFs  # of MCPs  

Blast TBI 22-45  30.8  4  5  5  

Non-blast 
TBI  

18-50  29  6  8  7  

Control  18-70*  39.8  6  9  9  
 
Causes of death by group were as follows:  
 
Blast TBI: 
Suicide drug overdose – blast years prior 
Ruptured aneurysm – blast years prior 
intraventricular hemorrhage – blast years prior 
Civilian Blast DOA 
 
Non-blast TBI: 
MVA – DOA 
MVA – DOS 
Suicide – NFL – GSW to chest 
Cardiac Arrest – NFL 
 
Controls: 
Suicide drug overdose 
Suicide blunt trauma - fall 
Cancer 
Cardiac Arrest 
 

Tissue fixation was highly variable because cases were obtained from 4 different sources: 
 
Location  Fixation Protocol  

St. Louis County Medical Examiners Office  10% formalin  

Harris County Institute for Forensic Sciences  10-20-10% graded formalin series, with added salt to keep tissue buoyant  

Boston University/Boston VA  Periodate-lysine-paraformaldehyde (4% PFA)  

Uniformed Services University of the Health 
Sciences  

10% formalin  
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Workflow is summarized on Figure 1 

Extracted 
Regions

Equilibrated in 
10% formalin

Equilibrated in 
30% sucrose

Embedded in 1% 
agaroseDTI scan

Equilibrated 
in 30% 
sucrose

Boiled in 
citrate buffer

Equilibrate in 
30% sucrose

Frozen, sliced for 
histology

Histology 

At least 1  week 1 week

1 day

4 minutes 1 day

Trimming

 
 
Examples of the process are shown in Figures 2-3: 

 
Figure 2: Workflow exemplar. The upper left panel shows a slab of cerebellum. 
The upper right panel shows a series of isolated regions containing the middle cerebellar peduncle. 
The lower left panel shows a trimmed tissue block containing the middle cerebellar penducle  
The lower right panel shows a histological slide containing the middle cerebellar peduncle white matter.  
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Figure 3 Workflow exemplar.The upper left panel shows a whole human brain from a non-blast TBI case. 
The upper right panel shows coronal slaps of the brain  
The lower left panel shows a frontal slab 
The lower central panel shows the removal of a block of tissue corresponding to the orbitofrontal region 
The lower right panel shows a magnified view of the orbitofrontal tissue block, including a region of punctuate 
hemorrhage in the white matter.  
 
DTI Methods:  
All scans were performed on a 4.7T Varian small bore scanner.  

  12-direction spin-echo diffusion weighted images   
  b0, b2000 
  TE 40ms, TR 1500ms 
  In-plane resolution 500x500 microns 
  Total acquisition time ~3hours 

 
Figure 4: DTI exemplars:  
The figure shows an exemplar of the diffusion tensor imaging from a block of orbitofrontal brain tissue. 
FA and RA: fractional anisotropy and relative anisotropy, indicators of overall white matter integrity. 
MD: mean diffusivity: the overall rate of diffusion of water. 
AD: axial diffusivity: the rate of diffusion parallel to the main fiber direction. 
RD: radial diffusivity the rate of diffusion perpendicular to the main fiber direction.  
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Figure 5: DTI Regions of Interest.The figure shows the white matter regions of interest analyzed on the diffusion tensor 
imaging (Fractional anisotropy maps) for the 3 anatomical regions assessed. Note that the signal in the white matter 
appears inhomogenous in a manner that does not appear to reflect anatomical substructure. This indicates possible sub-
optimal signal to noise 
 
 
 
 
Stereological methods: 
StereoInvestigator software coupled to a motorized stage on a Nikon 80i upright microscope.  
All tissue counted using a 2502 μm counting frame and a grid size of 15002, 25002, or 35002 μm depending on tissue and 
marker.  
Optical Fractionator ran at 10x objective, ROIs drawn at 1x  
2 slices were used for each marker per region of interest  
ROIs defined by grey/white matter boundaries  
All white matter was taken as ROI except for middle cerebellar peduncle, where only non-branching white matter was 
selected 
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ROI Definition

 
 
Figure 6: Histological Regions of Interest.The figure shows the white matter region of interest in the middle cerebellar 
peduncle, including only non-branching white matter regions. The branching white matter regions cannot be resolved 
with DTI, and so were not counted using stereology.  
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Figure 7: Microgliosis.The figure shows the morphological characteristics of Iba1-stained cells, used to indicate microglia. 
 
 

  
Figure 7: Astrogliosis The figure shows the morphological characteristics of GFAP-stained cells, used to indicate 
astrocytes. Note that there was a variety of observed morphologies, including small branched cells with fine processes 
(upper left portion) and larger cells with coarse dysmorphic processes (lower right portion)  
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Figure 9: Axonal Injury The figure shows the morphologies of neurofilament-heavy chain stained injured axons. 
The upper panel shows punctate staining indicating injured axons running in and out of the plane of the section. 
The lower panel shows elongated stained forms, indicating injured axons running within the plane of the section.
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RESULTS 
 
Ex vivo DTI 
The main finding from the analysis of the ex-vivo diffusion tensor imaging was that the cases and controls did not differ 
substantially in any DTI parameter. In large part, this may have been due to the very wide variety of DTI parameter across 
cases. This was especially notable in the controls, which were expected a priori to have had high and relatively 
homogenous fractional anisotropy. (See discussion) 

 

Parietal  Subcortical  WM

Contro
l

Non-blas
t

Blas
t

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
A

ni
so

tr
op

y

Orbitofrontal  WM

Contro
l

Non-blas
t

Blas
t

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
A

ni
so

tr
op

y

Middle  Cerebellar  Peduncle WM

Contro
l

Non-blas
t

Blas
t

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
A

ni
so

tr
op

y

Figure 10: Relative Anisotropy across groups. The figure shows that there was no difference in relative anisotropy 
between any of the groups in any of the 3 regions of interest. The relative anisotropy was quite low in all cases, lower 
than expected for intact white matter based on in vivo and previous ex vivo studies. 
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Figure 11: Mean Diffusivity across groups The figure shows that there was no difference in mean diffusivity between any 
of the groups in any of the 3 regions of interest. 
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 Figure 12: Axial Diffusivity across groups: The figure shows that there was no difference in axial diffusivity between any 
of the groups in any of the 3 regions of interest. 
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Figure 12: Radial Diffusivity across groups: The figure shows that there was no difference in radial diffusivity between 
any of the groups in any of the 3 regions of interest.
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Quantitative Histology 
Overall the main finding from the histological analysis was that the cases and controls did not substantially differ in the 
density of the pathological markers assessed. There was a wide variety in all of the pathological counts.  
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 Figure 13: Microgliosis across groups: The figure shows that the density of Iba1 stained activated microglia was not 
different between controls, non-blast TBI cases , and blast-TBI cases in any of the 3 regions: parietal subcortial white 
matter, orbitofrontal white matter, and middle cerebellar peduncle white matter. 
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 Figure 14: Astrogliosis across groups:The figure shows that the density of GFAP stained reactive astrocytes was not 
different between controls, non-blast TBI cases, and blast-TBI cases in any of the 3 regions. There was a trend towards 
reduced astrocytosis in the blast-TBI cases.  
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Figure 15: Axonal Injury across groups:The figure shows that the density of neurofilament-heavy chain stained injured 
axons was not different between controls, non-blast TBI cases, and blast-TBI cases in any of the 3 regions. In a substantial 
number of cases, there were no injured axons detected in the orbitofrontal white matter or middle cerebellar peduncle. 
This is in contrast to our initial hypothesis that these regions would be especially vulnerable to axonal injury.  
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Correlations between DTI and quantitative histology: 
Overall, the main finding was that there were few significant correlations between the DTI parameters and the 
quantitative histological markers of microgliosis, astrogliosis or axonal injury. The strongest correlations indicated that 1) 
higher astrocyte counts correlated with lower anisotropy (indicating less intact white matter microstructure). 2) Higher 
NF-H counts indicative of injured axons correlated with lower mean, axial and radial diffusivity. The finding regarding the 
astrocytosis is in the expected direction, but the correlations were substantially weaker than would be expected for a 
clinically useful radiological-pathological correlation. The finding regarding the neurofilament heavy chain is difficult to 
reconcile with previous studies or theoretical models of diffusivity changes following traumatic axonal injury. It may be 
due to covariates such as overall tissue integrity or fixation quality.   
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Figure 16: Correlations between DTI parameters and microgliosis: The figure shows the lack of correlations between the 
5 diffusion tensor imaging parameters and activated microglia counts as assessed by Iba1 immunohistochemistry.  
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Figure 17: Correlations between DTI parameters and astrogliosis: TThe figure shows only modest correlations between 
the diffusion tensor imaging parameters and reactive astrocyte counts as assessed by GFAP immunohistochemistry.  
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 Figure 18: Correlations between DTI parameters and axonal injury: TThe figure shows only modest correlations 
between the diffusion tensor imaging parameters and axonal injury as assessed by neurofilament-heavy chain 
immunohistochemistry.  
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As a methodological control, we assessed whether the measured tissue volumes from the DTI and histological analyses 
were correlated.  
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Figure 19: Methodological control: Correlations between DTI parameters histological region of interest volumes: TThe 
figure shows that the tissue volumes assessed during the DTI analysis were highly correlated with the volumes assessed 
during the stereological analysis. This suggested that bias in the way the regions of interest were assessed did not 
contribute substantially to the overall lack of correlation between DTI parameters and histological marker counts.  
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KEY RESEARCH ACCOMPLISHMENTS:   
 
-We have identified many of the methodological issues required to perform high quality radiological-pathological 
correlations using diffusion tensor imaging in human brain tissue. 
-We detected a statistically significant correlation between anisotropy and the extent of astrogliosis, but this correlation 
was too weak to be clinical useful. 
 
 
     REPORTABLE OUTCOMES:   
Results from this project were used as preliminary data to support the PI’s successful application for additional funding 
from the NIH. (See below).  
 
 
     CONCLUSION:  The primary conclusion from this line of investigation is that while the concept of ex-vivo radiological 
pathological correlation analysis remains valid, the high degree of variability in the tissue samples analyzed complicates 
the analysis substantially. Specifically, variability in time from injury to death, age, fixation methods, and causes of death 
may have obscured the relationships between pathological markers and DTI signal characteristics. In addition, the highly 
variable fiber direction in the white matter regions chosen may make the relative simple diffusion tensor model 
inappropriate. We detected a statistically significant correlation between anisotropy and the extent of astrogliosis, but 
this correlation was too weak to be clinical useful. 
 We plan to address these concerns in future studies. Specifically, we plan to address the following 
methodological issues: 

1) Selection of control cases: we will select only young, otherwise healthy patients who died from non-head trauma 
and had a short post-mortem interval. 

2) Fixation: we will obtain all cases and controls from the same source using the same fixation methods 
3) Scanning method: we will attempt to use more advanced diffusion methods such as diffusion kurtosis imaging 

and high angular resolution imaging to help address the problem of variable fiber direction 
4) Signal to noise: it is possible that our signal to noise was too low to get reliable DTI information from some of the 

cases. We will build new custom coils with improved field homogeneity, soak tissues in gadolinium, and increase 
scan times to improve signal to noise. 

While the current project is essentially complete, we have obtained funding from the NIH through a U01 mechanism (PI 
Dr. Ann McKee) to continue to advance our development of radiological-pathological correlation methods. With 
additional development, we plan to assess the effects of both repetitive concussive injury and blast-related TBI over the 
next 5 years.  
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